Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Med Microbiol ; 49: 100608, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38723717

RESUMO

Timely diagnosis and treatment of sepsis is a major challenge faced by critical care specialists around the world. The traditional blood culture methods have a significant turnaround time which delays targeted therapy leading to poor prognosis. In the current study, we highlight the clinical utility of a genomics solution for diagnosis and management of bloodstream infections by combining the real-time DNA sequencing of Oxford Nanopore Technology with an automated genomic data analysis software. We identify a carbapenem-resistant Klebsiella pneumoniae directly from a blood sample in <24 hours and thereby prove the effectiveness of the test in early diagnosis of sepsis.

2.
J Org Chem ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739842

RESUMO

Safrole is a natural product present in many plants and plant products, including spices and essential oils. During cellular metabolism, it converts to a highly reactive trans-isosafrole (SF) intermediate that reacts with genomic DNA and forms N2-SF-dG and N6-SF-dA DNA adducts, which are detected in the oral tissue of cancer patients with betel quid chewing history. To study the SF-induced carcinogenesis and to probe the role of low fidelity translesion synthesis (TLS) polymerases in bypassing SF adducts, herein, we report the synthesis of N2-SF-dG modified DNAs using phosphoramidite chemistry. The N2-SF-dG modification in the duplex DNA does not affect the thermal stability and retains the B-form of helical conformation, indicating that this adduct may escape the radar of common DNA repair mechanisms. Primer extension studies showed that the N2-SF-dG adduct is bypassed by human TLS polymerases hpolκ and hpolη, which perform error-free replication across this adduct. Furthermore, molecular modeling and dynamics studies revealed that the adduct reorients to pair with the incoming nucleotide, thus allowing the effective bypass. Overall, the results indicate that hpolκ and hpolη do not distinguish the N2-SF-dG adduct, suggesting that they may not be involved in the safrole-induced carcinogenicity.

3.
Biochemistry ; 62(16): 2391-2406, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37486230

RESUMO

The secondary metabolites of polypropanoids, methyleugenol (MEG), and estragole (EG), found in many herbs and spices, are commonly used as food flavoring agents and as ingredients in cosmetics. MEG and EG have been reported to cause hepatocarcinogenicity in rodents, human livers, and lung cells. The formation of N2-dG and N6-dA DNA adducts is primarily attributed to the carcinogenicity of these compounds. Therefore, these compounds have been classified as "possible human carcinogens" by the International Agency for Research on Cancer and "reasonably anticipated to be a human carcinogen" by the National Toxicology Program. Herein, we report the synthesis of the N2-MEG-dG and N2-EG-dG modified oligonucleotides to study the mutagenicity of these DNA adducts. Our studies show that N2-MEG-dG and N2-EG-dG could be bypassed by human translesion synthesis (TLS) polymerases hpolκ and hpolη in an error-free manner. The steady-state kinetics of dCTP incorporation by hpolκ across N2-MEG-dG and N2-EG-dG adducts show that the catalytic efficiencies (kcat/Km) were ∼2.5- and ∼4.4-fold higher, respectively, compared to the unmodified dG template. A full-length primer extension assay demonstrates that hpolκ exhibits better catalytic efficiency than hpolη. Molecular modeling and dynamics studies capturing pre-insertion, insertion, and post-insertion steps reveal the structural features associated with the efficient bypass of the N2-MEG-dG adduct by hpolκ and indicate the reorientation of the adduct in the active site allowing the successful insertion of the incoming nucleotide. Together, these results suggest that though hpolκ and hpolη perform error-free TLS across MEG and EG during DNA replication, the observed carcinogenicity of these adducts could be attributed to the involvement of other low fidelity polymerases.


Assuntos
Adutos de DNA , DNA Polimerase Dirigida por DNA , Humanos , DNA Polimerase Dirigida por DNA/metabolismo , Replicação do DNA
4.
J Mol Biol ; 435(17): 168188, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37380013

RESUMO

Viruses are believed to be the obligate intracellular parasites that only carry genes essential for infecting and hijacking the host cell machinery. However, a recently discovered group of viruses belonging to the phylum nucleocytovirocota, also known as the nucleo-cytoplasmic large DNA viruses (NCLDVs), possess a number of genes that code for proteins predicted to be involved in metabolism, and DNA replication, and repair. In the present study, first, using proteomics of viral particles, we show that several proteins required for the completion of the DNA base excision repair (BER) pathway are packaged within the virions of Mimivirus as well as related viruses while they are absent from the virions of Marseillevirus and Kurlavirus that are NCLDVs with smaller genomes. We have thoroughly characterized three putative base excision repair enzymes from Mimivirus, a prototype NCLDV and successfully reconstituted the BER pathway using the purified recombinant proteins. The mimiviral uracil-DNA glycosylase (mvUDG) excises uracil from both ssDNA and dsDNA, a novel finding contrary to earlier studies. The putative AP-endonuclease (mvAPE) specifically cleaves at the abasic site created by the glycosylase while also exhibiting the 3'-5' exonuclease activity. The Mimivirus polymerase X protein (mvPolX) can bind to gapped DNA substrates and perform single nucleotide gap-filling followed by downstream strand displacement. Furthermore, we show that when reconstituted in vitro, mvUDG, mvAPE, and mvPolX function cohesively to repair a uracil-containing DNA predominantly by long patch BER and together, may participate in the BER pathway during the early phase of Mimivirus life-cycle.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Mimiviridae , DNA , Replicação do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Uracila/metabolismo , Mimiviridae/genética
5.
Analyst ; 147(23): 5306-5313, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36326035

RESUMO

We report the development of a portable absorption (PortAbs)-based pathogen nucleic acid detection system using peptide nucleic acid (PNA) and a cyanine dye, DiSc2(5). When the dye binds to the PNA-DNA hybrid, it results in a characteristic ∼110 nm shift in the dye absorbance, which we measure using PortAbs. The protocol involves amplification of the target DNA, PNA-DNA hybridization and dye complexing steps followed by absorption measurement. The system is built using a broad-spectrum photodiode whose output is amplified and then measured by a high resolution (24 or 32 bit) analog-to-digital converter. The excitation pulses of light are delivered by a color-changing LED. The sequence of excitation, measurement and display of results are all controlled by an embedded Raspberry-Pi board (or alternatively a laptop). At higher concentrations of the target amplicon (∼200 ng), the color change can be detected visually. At lower concentrations, PortAbs outperforms a plate reader and can detect target DNA as low as 30 ng or approximately 10 nM which is at least 10 fold better than previously reported studies. We validate the methodology using SARS-CoV-2 clinical samples containing about 1000 copies of the viral RNA and show that the entire workflow takes about 90 min. The cost of the complete standalone system is less than INR 40 000 (approx. 500 USD).


Assuntos
COVID-19 , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , Ácidos Nucleicos Peptídicos/genética , SARS-CoV-2 , Hibridização de Ácido Nucleico , DNA/genética
6.
Nucleic Acids Res ; 47(13): 6932-6945, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31001622

RESUMO

Acanthamoeba polyphaga mimivirus is an amoeba-infecting giant virus with over 1000 genes including several involved in DNA replication and repair. Here, we report the biochemical characterization of gene product 577 (gp577), a hypothetical protein (product of L537 gene) encoded by mimivirus. Sequence analysis and phylogeny suggested gp577 to be a primase-polymerase (PrimPol)-the first PrimPol to be identified in a nucleocytoplasmic large DNA virus (NCLDV). Recombinant gp577 protein purified as a homodimer and exhibited de novo RNA as well as DNA synthesis on circular and linear single-stranded DNA templates. Further, gp577 extends a DNA/RNA primer annealed to a DNA or RNA template using deoxyribonucleoties (dNTPs) or ribonucleotides (NTPs) demonstrating its DNA/RNA polymerase and reverse transcriptase activity. We also show that gp577 possesses terminal transferase activity and is capable of extending ssDNA and dsDNA with NTPs and dNTPs. Mutation of the conserved primase motif residues of gp577 resulted in the loss of primase, polymerase, reverse transcriptase and terminal transferase activities. Additionally, we show that gp577 possesses translesion synthesis (TLS) activity. Mimiviral gp577 represents the first protein from an NCLDV endowed with primase, polymerase, reverse transcriptase, terminal transferase and TLS activities.


Assuntos
DNA Nucleotidilexotransferase/metabolismo , DNA Primase/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mimiviridae/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , DNA Nucleotidilexotransferase/química , DNA Nucleotidilexotransferase/genética , DNA Nucleotidilexotransferase/isolamento & purificação , DNA Primase/química , DNA Primase/genética , DNA Primase/isolamento & purificação , Primers do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/isolamento & purificação , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Dimerização , Mimiviridae/genética , RNA , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...